毕业论文
您现在的位置: 语言识别 >> 语言识别资源 >> 正文 >> 正文

让科技回归人性,李飞飞宣布成立斯坦福以

来源:语言识别 时间:2023/6/10
白癜风怎么能控制 http://m.39.net/pf/a_4383451.html

这一次,台上的李飞飞不是GoogleCloud的首席科学家,也不是斯坦福人工实验室(SAIL)的负责人,她又多了一个新的身份——斯坦福以人为本人工智能(HAI)研究院的联合主任(co-director)。

年10月,重返斯坦福的李飞飞对外宣布了一则消息,斯坦福大学启动HAI项目,由李飞飞和斯坦福前教务长共同领导这个项目。虽然李飞飞一直积极地传递「以人为本」使用人工智能的观点,但是试图建立一所以人为本研究院要从更早说起。

年夏天,李飞飞对那时还担任斯坦福大学的教务长JohnEtchemendy说道,「作为斯坦福大学的教务长,你领导了从技术到人文学科的进步,帮助人文主义者创新他们的方法论。」「但是是时候造一支回程箭了,我们需要将人文和社会思想融入到科技中。」

JohnEtchemendy和李飞飞

她接着解释最近的想法。建设未来的人似乎有着相似的背景,他们都钻研在数学、计算机科学和工程等领域。没有足够多的哲学家,历史学家和行为科学家能够影响新技术的发展。「我们需要探讨地更广泛、更深入,探讨与人类共同未来相关的东西。这种广泛的讨论和思维将带给我们一种更加以人为中心的技术,让每个人的生活都变得更好。」

在担任GoogleCloud首席科学家期间,李飞飞目睹了科技行业在AI领域内的巨大投入,她更加坚定了想法,要在斯坦福建立一所以人为本的人工智能研究院。年,当约翰辞去教务长一职,李飞飞邀请他共同从事自己最初设想的事业。

带着李飞飞最初的愿景,3月18日,斯坦福以人为本AI研究院(StanfordHAI)成立了。这所研究院由斯坦福大学七所学院的名教师组成,同时计划从人文、工程、医学、艺术或者基础科学等领域招募至少20名新教师,其中包括10名初级研究员,同时与AI4All,AI,AIIndex等组织展开合作。

斯坦福利用HAI评估智能机器对人类生活所造成的影响,包括机器自动化取代了部分人力工作,算法引起的性别和种族偏见,医疗、教育和司法系统中存在的AI问题。

研究院虽然才刚刚成立,但是已经向斯坦福七所学院,大约55个跨学科研究小组提供了支持。其中包括帮助难民重新安置,改善重症监护室医疗服务系统,以及研究自动驾驶汽车对社会治理和基础设施的影响。

人工智能的发展不都是利好的一面。在接受华尔街日报采访时,李飞飞被提问了这样一个问题。在未来AI也许会代替人类做许多决策,那么信任将从何而来?李飞飞坦然回答到,「我认为我们要走的路还有很长。建立信任需要多方的努力。」但是李飞飞也认为,机器不能取代人类做所有的决策。在很多AI的应用中,人类仍然是中间必不可少的一环。

从以人为本的初衷出发,发布会上李飞飞也强调了HAI需要遵守的三个原则:

发展AI的过程中必须考虑AI对人类社会的影响;AI的应用是为了赋能人类,而非取代人类;AI必须尽可能像人类智慧一样敏感、细腻、有深度。关于HAI的目标,李飞飞说,希望「智能机器更加以人为本,怀有善意。帮助我们——人类,解决一些最有意义的难题。」

以下为李飞飞在斯坦福大学以人为本AI研究院开幕大会上的主题演讲全文,由极客公园翻译整理:

李飞飞

早上好,欢迎各位。我想感谢Mark,他给我们分享了畅想斯坦福未来的一个如此美妙的视角。

我和JohnEtchemendy,以及斯坦福大学的很多同事、学生和合作者,都为我们正在共同构建的事业感到兴奋。现在,在今天演讲的开头,我想先跟各位分享一段多年前我还是本科科研实习生的经历。

那是凌晨3点,我和一群同学蜷缩在黑暗的实验室里。在我们面前的,是一只被全身麻醉的猫——它的视觉皮层连接着一连串电极。我们将这些电极连接到一个扬声器,并在猫的眼前投射出移动的线条。通过扬声器,我们听到了它神经元响应的声音。每一个噼里啪啦的声响都是大脑运作的一瞥,它们一起奏响了哺乳动物视觉系统的交响曲。

直至今天,当时那个时刻仍在影响着我。

这是一项最早有由神经生理学家DavidHubel和TorstenWiesel进行的实验。他们所做的,是神经科学领域的突破和一个真正的转折点。这个实验为视觉智能奠定了基础,并给这两位科学家赢得了诺贝尔奖,并为今天通过AI来改变世界的神经网络架构提供了蓝图。他们在年就完成了这一切。

DavidHubel和TorstenWiesel

这项实验不仅仅是科学的源泉,它还是想象力的真正壮举。正是同样的好奇心,激发了从柏拉图,到笛卡尔,到图灵等思想家,向内心寻找心灵的奥秘,敢于追问心灵是如何运作的。别人只是看到魔法,但他们却窥见了科学的前沿,并进行探索。

今天,我们发现自己被这种想象力所包围。这是一个连接信息和技术发展的时代,可以被称为「第四次工业革命」。但这也是一个机遇和危险共存的世界。

在不到十年的时间里,AI从一个学术领域的技术发展成了一个全球性的现象。不可否认的是,智能机器有可能会做坏事。它们容易受到算法偏差的影响,并且会引起人们对隐私、安全和工作被替换的担忧。这些都是AI的隐患。他们影响到了人类,要求紧急行动。

作为技术专家,我们有责任处理工具的缺陷,但也有责任充分发挥其潜力。年世界非常复杂,我们对于事物理解的局限性也凸显出来。所以,我们要更智能的技术来帮助我们理解这个世界。

这就是AI带来的机会。

气候变化,尽管事态非常严重紧急,我们很难收集到大规模和精细的数据,来全面理解气候变化,并且启用社会层面的节能措施。智能技术可以帮助你。它可以在全球范围内整合数据,从卫星图像到电网传感器,甚至是不分时间和地点持续运作的自主无人机。所有这些,都可以帮助我们优化从数据中心到家庭的资源分配方式。

然后,就是医疗保健。对世界上的许多人口来说,医疗保健的使用依然是他们无法企及的奢侈品。但随着计算机视觉算法将临床观察慢慢变成低成本技术,我们就可以说,AI已经在悄然改变诊断。信息本身、文档、记录甚至是扫描文件的纷杂都远远超出人类能处理的程度。在这些杂乱的数据里,还有多少有用的知识未被发现?通过使用图像识别和自然语言处理方法的文档理解技术,我们或许就能找到答案。

这些都是关于人工智能如何增强人类功能,以及如何在超出我们能力的情况下,为受伤需要帮助的人提供支持的故事。

但问题是,我们可以只受益,不受害?为了找到答案,我们必须在比历史上任何其他时间更大的范围内进行设想。而这种寻找将标志着AI新篇章的开始。AI将以人为本,融合全球各种专业知识、理念和视角。

正是本着这一精神,我们宣布成立斯坦福以人为本人工智能研究所(StanfordinstituteofhumancenteredAI,StanfordHAI)。它的使命是推动人工智能研究、教育、政策和实践,以改善人类状况。它的目标是成为一个全球对话中心,让每一个学科都能应对AI的挑战。这是对你们所有人的邀请,让我们通过承诺三个基本原则,一起畅想未来。

首先,为了让AI得到适当的发展,我们需要把它与正在进行的对其对人类社会影响的研究结合起来,并对它加以相应的指导。

其次,AI的最终目的应该是增加和增强我们的人性,而不是削弱或取代它。为了充分发挥AI的潜力,更好地满足我们的需求,它必须不断进化,吸收更多人类智慧的多样性、细微差别和深度。

让我们从技术本身开始。近年来,AI发展出了一些非凡的能力,但它仍远远落后于神经元、人类智能的微妙和灵活性。当一种算法在拥挤的街道上驾驶汽车或促成假释听证会的结果时,流畅的人类经验是至关重要的。

让我们用这张简单的照片来说明AI和人类智能的区别。当今最先进的计算机视觉算法可以很容易地识别它们眼前的对象,比如狗、沙发、人、咖啡杯等等。

人类智能看到了什么

但作为人类,我们看到了什么?我们不仅能知道沙发坏了,还知道是狗干的。我们还可以从一个简单的姿势看出,主人不是很开心。更神奇地,我们可能是从狗脸上的内疚表情中看出来的,而且马上就能看出来。这些就是人脑所做的。我们毫不费力地就能识别环境并唤起记忆。用类比的方法,用熟悉的术语来理解新观点。我们创造的联想可以触发一切,从假设到一首诗。我们能感觉到事件之间的因果关系,把一系列的瞬间变成一个故事,在其他人在场的时候,一个强大的情感维度也出现了。

发展至今的AI的确令人印象深刻,但人类智能的丰富性依然独一无二。当然,我们认识到,让AI对人类认知的整个范围更加敏感并非易事。解决方案将取决于来自神经科学、认知科学和心理学的见解,这也就是为什么斯坦福HAI研究院致力于促成来自这些领域的专家合作。

现在,你们可以和我一起想象,这种具有深度和多功能性的技术能做到什么?

例如,AI正在改变医学诊断,因为算法可以更快、更精确、更一致地检测疾病。但这仅仅只是个开始。想象一下,你站在医生的角度,在拥挤的急救室里,周边都是需要帮助的人,但你的首要职责是先处理最紧急的情况。如果病人数量少,那情况还是可控的,但随着人数越来越多,你的时间和精力会被分散,问题将变得更加复杂。每个病人都以他们自己的方式和你交流,面对你可能只在一瞥中看到的环境,这些需求随时都可能改变。

下一代的由AI驱动的医疗系统能做到什么?想象一下,它可以识别病人肢体或他们含糊不清的语音,并通过交叉参照来加快初步诊断的速度。

我们可以想象,它们能根据病人的面部表情和姿势对其情绪状态做出有根据的猜测。它可以在每个病人等待的时候,为他们戴上一只人造眼和一只人造耳,观察他们的医疗和情绪状态的变化,并让临床医生当天保持清醒。想象一下,这一切都是实时进行的,为急诊室内的每个人而工作。

这种医疗系统的效果将是革命性的。临床医生得以继续与患者面对面,但压力更小,注意力更集中。在急诊室里,节省时间往往就是拯救生命。

那么,一个类似的应用在教育场景下的AI驱动的教学系统,我们也就不难想象得出来了。这个系统可以监测班级安全审查作业,来衡量学生的理解,标记他们可能的优点和缺点,甚至协助教师对学生评分。同时,教师也能少分心,更加聚焦在每个学生身上。作为斯坦福大学的最大深度学习课程的讲师,我在想象无限量的免费AI助教,这太让人兴奋了。

甚至,像搜救这样的任务也可以变得更安全、更有效。将AI驱动的系统部署在灾区,它或许可能构建一个实时的环境3D地图,并生成安全的最佳路径,以帮助救援队更快找到需要救助的人。这种算法甚至可以与消防部门、血库、医院、地方政府和媒体共享信息。尽快有第一个反应者出现,公众保持清醒。

名单还能继续列下去,但故事却是一样的。以人为本的AI不断进化它基本的判断和感知技能,在比较简单的工作上,更好地服务人类。总而言之,人类的能力可以专注于更高层次的任务,更安全,更少重复,更有创造力,最终更有意义。

AI不是要取代我们,而是让我们做得更好。这又把我们带回了人工智能陷阱的话题。现在,对我们所有人来说,重要的是要记住这是历史上独一无二的时刻,我们是第一代看到这种技术以如此规模和速度从实验室转移到现实世界的人。这是头一次,人工智能的伦理不再是一个抽象概念或哲学实践。这项技术影响着现实生活中的人们。因此,我们有责任充分了解这项技术的影响,预测世界将如何作出反应,并据此作出指导。

换句话说,是时候让伦理成为人工智能研发的基本元素了。

让我们从算法偏差和失业开始。这些都是重大问题,解决办法将采取多种形式。例如,有些偏差是技术性的,可以通过统计方法自动消除偏差数据集,但人的因素也很重要。当谈到失业问题时,尽管技术可以在提高技能方面发挥重要作用,但受到劳动力影响的同时,政策也将在为他们提供选择和支持方面发挥至关重要的作用。

但复杂性还不止于此。例如,随着人工智能在人类任务中发挥越来越多的协作作用,我们的法律将如何改变?随着人类专家越来越依赖于机器智能,我们的责任观念将会变成什么样?出了问题谁来负责?工程师们是时候面对这些问题了,政策制定者、法律学者和伦理学家也应该帮助寻找答案。

从历史上看,新技术的影响往往远远超出它们所提供的功能。例如,汽车的发明只是为了帮助我们更快地出行,但一个世纪后,整个世界已被高速公路、停车场和加油站重塑,更不用说对全球自然资源和气候的影响了。

智能机器的普及将会给我们的社区带来什么?它们将如何影响我们的文化?我们已经生活在一个每天对技术陷阱提心吊胆的世界里。因为智能技术惊人的能留,它也伴随着非常高的风险。

这些都是重大而棘手的问题,值得认真对待。它们要求我们投入时间、资源和广泛的专业知识来理解这项技术,预测它将带来的未来,并负责任地引导其进程。最重要的是,这是一个人性的呼吁。

这就是定义以人为本人工智能的三条原则,由此我们能确保它的设计是人性化的,它在社会中的角色是人性化的,它的影响是人性化的。

HAI三原则

现在我想聊聊斯坦福HAI研究院作为一家组织的目标。

当然,我们的目标是在与医学、法律、经济学和各式各样学科的精英们一起,促进突破性的研究,提升现有的技术水平。

接下来,为了鼓励一个包容的、持续的对话,HAI研究院正在努力建设一个全球性的思想领袖论坛,将政策制定者、学者、商业领袖、记者和社会公民聚集在一起,其中的很多人今天就坐在台下。我们期待坦诚地对话,直面未来最棘手的问题,并让全球的

转载请注明:http://www.0431gb208.com/sjslczl/4941.html