试图让计算机理解人类的语言一直是人工智能领域迈不过的难关。
早期的自然语言处理模型通常采用人工设计特征,需要专门的语言学家手工编写pattern,但最终效果却并不理想,甚至AI研究一度陷入寒冬。
每当我开除一个语言学家,语音识别系统就更准确了。
EverytimeIfirealinguist,theperformanceofthespeechrecognizergoesup.
——FrederickJelinek
有了统计模型、大规模预训练模型以后,特征抽取是不用做了,但仍然需要对指定任务进行数据标注,而且最关键的问题在于:训练得到的模型还是不懂人类的语言。
所以,我们是不是该从语言最初的形态开始重新研究:人类到底是怎么获得语言能力的?
最近来自康奈尔大学、麻省理工学院和麦吉尔大学的研究人员在NatureCommunications上发表了一篇论文,提出一个算法合成模型的框架,在人类语言的最基础部分,即词法音位学(morpho-phonology)上开始教AI学习语言,直接从声音中构建语言的词法。
论文链接:
转载请注明:http://www.0431gb208.com/sjszlfa/7028.html