北京哪里医院看白癜风好 http://www.t52mall.com/DataScienceCentral网站主编、有多年数据科学和商业分析模型从业经验的BillVorhies曾撰文指出,过去一年人工智能和深度学习最重要的发展不在技术,而是商业模式的转变——所有巨头纷纷将其深度学习IP开源。毋庸置疑,“开源浪潮”是年人工智能领域不可忽视的一大趋势,而其中最受欢迎的项目则是谷歌的深度学习平台TensorFlow。下文就从TensorFlow说起,盘点年AI开源项目,最后统计了Github最常用深度学习开源项目Top50。谷歌开源:围绕TensorFlow打造深度学习生态圈1.Google第二代深度学习引擎TensorFlow开源年11月,谷歌开源深度学习平台TensorFlow。年4月,谷歌推出了分布式TensorFlow。现在,TensorFlow已经成为业内最受欢迎的深度学习平台之一。2.谷歌开源全球最精准语言解析器SnytaxNet年5月13日,GoogleResearch宣布,世界准确度最高的自然语言解析器SyntaxNet开源。谷歌开源再进一步。据介绍,谷歌在该平台上训练的模型的语言理解准确率超过90%。SyntaxNet是一个在TensoFlow中运行的开源神经网络框架,提供自然语言理解系统基础。谷歌公开了所有用用户自己的数据训练新SyntaxNet模型所需要的代码,以及谷歌已经训练好的,可用于分析英语文本的模型PaeseyMcParseface。PaeseyMcParseface建立于强大的机器学习算法,可以学会分析句子的语言结构,能解释特定句子中每一个词的功能。此类模型中,PaeseyMcParseface是世界上最精确的,谷歌希望它能帮助对自动提取信息、翻译和其他自然语言理解(NLU)中的应用感兴趣的研究者和开发者。3.谷歌推出DeepWideLearning,开源深度学习API年6月29日,谷歌推出WideDeepLearning,并将TensorFlowAPI开源,欢迎开发者使用这款最新的工具。同时开源的还有对WideDeepLearning的实现,作为TF.Learn应用程序接口的一部分,让开发者也能自己训练模型。4.谷歌开源TensorFlow自动文本摘要生成模型年8月25日,谷歌开源了TensorFlow中用于文本信息提取并自动生成摘要的模型,尤其擅长长文本处理,这对自动处理海量信息十分有用。自动文本摘要最典型的例子便是新闻报道的标题自动生成,为了做好摘要,机器学习模型需要能够理解文档、提取重要信息,这些任务对于计算机来说都是极具挑战的,特别是在文档长度增加的情况下。5.谷歌开源图像分类工具TF-Slim,定义TensorFlow复杂模型年8月31日,谷歌宣布开源TensorFlow高级软件包TF-Slim,能使用户快速准确地定义复杂模型,尤其是图像分类任务。自发布以来,TF-Slim已经得到长足发展,无论是网络层、代价函数,还是评估标准,都增加了很多类型,训练和评估模型也有了很多便利的常规操作手段。这些手段使你在并行读取数据或者在多台机器上部署模型等大规模运行时,不必为细节操心。此外,谷歌研究员还制作了TF-Slim图像模型库,为很多广泛使用的图像分类模型提供了定义以及训练脚本,这些都是使用标准的数据库写就的。TF-Slim及其组成部分都已经在谷歌内部得到广泛的使用,很多升级也都整合进了tf.contrib.slim。6.谷歌开源大规模数据库,10亿+数据,探索RNN极限年9月13日,谷歌宣布开源大规模语言建模模型库,这项名为“探索RNN极限”的研究今年2月发表时就引发激论,如今姗姗来迟的开源更加引人瞩目。研究测试取得了极好的成绩,另外开源的数据库含有大约10亿英语单词,词汇有80万,大部分是新闻数据。这是典型的产业研究,只有在谷歌这样的大公司才做得出来。这次开源也应该会像作者希望的那样,在机器翻译、语音识别等领域起到推进作用。7.谷歌开源TensorFlow图说生成模型,可真正理解图像年9月23日,谷歌宣布开源图说生成系统ShowandTell最新版在TensorFlow上的模型。该系统采用编码器-解码器神经网络架构,分类准确率达93.9%,在遇到全新的场景时能够生成准确的新图说。谷歌表示,这说明该系统能够真正理解图像。8.谷歌开源超大数据库,含万+视频年9月28日,谷歌在官方博客上宣布,将含有万个Youtube视频URL的视频数据库开源,视频总时长达到了50万个小时。一并发布的还有从包含了4个知识图谱分类数据集中提取的视频级别标签。这一数据库在规模和覆盖的种类上都比现有的视频数据库有显著提升。例如,较为著名的Sports-1M数据库,就只由万个Youtube视频和个运动类目。谷歌官方博客上说,在视频的数量和种类上,Youtube-8M代表的是几乎指数级的增长。9.谷歌发布OpenImages图片数据集,包含万标注图片年10月1日,继前天发布万视频数据集之后,谷歌又发布了图片数据库OpenImages,包含了万标注数据,标签种类超过种。谷歌在官方博客中写到,这比只拥有0个分类的ImageNet更加贴近实际生活。对于想要从零开始训练计算机视觉模型的人来说,这些数据远远足够了。就在12月,谷歌还开源了OpenImages并行下载工具的脚本,5天速度最高超过M。10.DeepMind开源AI核心平台DeepMindLab(附论文)年12月5日,DeepMind宣布将其AI核心平台DeepMindLab开源。DeepMind实验室把全部代码上传至Github,供研究人员和开发者进行实验和研究。DeepMindLab这一平台将几个不同的AI研究领域整合至一个环境下,方便研究人员测试AI智能体导航、记忆和3D成像等能力。值得一提的是,这些代码也包括AlphaGO的代码,谷歌希望以此增加AI能力的开放性,让更多开发者参与AI研究,观察其他开发者是否能够挑战并打破DeepMind现在的纪录。Facebook开源:贯彻理念1.Facebook开源围棋引擎DarkForest6个月前,Facebook将其围棋引擎DarkForest开源。现在训练代码已经全部发布。Github链接:
转载请注明:http://www.0431gb208.com/sjslczl/7771.html