毕业论文
您现在的位置: 语言识别 >> 语言识别前景 >> 正文 >> 正文

相比印度裔,为何美国科技公司华裔高管寥寥

来源:语言识别 时间:2023/4/4

观察者网:人工智能的核心技术有哪些?目前的技术水平离“强人工智能”还有多远?

受访团队:当前人工智能的核心技术主要是机器学习和大数据。大数据是人工智能的基础,而使大数据转变为知识或生产力,离不开机器学习(MachineLearning),它是使机器具有类似人的智能的根本途径。从本质上来说,人工智能的发明是为了模仿人类思考问题的逻辑,从而能自主解决问题。弱人工智能把特征的决定权交给了人,由人类事先选择好特征,然后通过函数逼近来拟合特征曲线,从而找到输入和输出之间的映射函数。强人工智能则是摈弃人的因素试图自己搞定特征,由算法自己找出输入对应输出的特征,然后自行建立映射函数,从而诞生真正的自主智能。但是只要存在算法,必然就存在人的因素,除非算法符合智能诞生的原始状况,自行演进。简而言之,强人工智能是有知觉、有意识、能推理、能解决问题的智能机器。而现阶段人工智能,无论完成多复杂的任务,本质均是实现向量空间中的映射,并没有思维的能力。现有的创新多停留在算法模型框架层面的创新,都是人为创造和规定的,性能比较也停留在算得快、算得准,从未有关于AI创造力如何的评价。但是,不排除随着技术形式的变化和更替、脑科学等学科的深度发展,强人工智能会以怎样一种目前无法想象的状态出现,促使AI机器从“专用智能”走向“通用智能”。

由国务院发展研究中心技经所人工智能研究团队参与编制的《人工智能全球格局:未来趋势与中国位势》

观察者网:中国在人工智能基础算法上的投入和产出如何?

受访团队:一方面,我们需要肯定中国在人工智能算法研究上取得的优异成绩。年,中国人工智能论文数量、专利申请量都已经高居全球第一。以中科院、清华大学、中国科技大学和西安交通大学等为代表的科研院所,在机器学习和深度学习算法研究上贡献了大量高质量论文。以百度、阿里巴巴和腾讯为代表的科技巨头和以商汤、科大讯飞和深兰为代表的独角兽企业,在语音识别、自然语言处理、计算机视觉和智能驾驶等AI算法开发中取得了不俗成绩。毫无疑问,中国在人工智能算法上的进步速度十分显著,投入和产出效率非常高。但另一方面,我们也需要审视中国在核心算法、底层技术上的不足。年“徐匡迪之问”引发了业界的广泛共鸣,中国人工智能领域真正搞算法的科学家凤毛麟角,基础核心算法的缺失未来或将成为中国人工智能发展的“瓶颈”所在。比较来看,美、欧、日的数学基础更加扎实,在人工智能算法研究时更能从基础理论上实现“突破”。举个不太恰当的例子,谷歌公司软件有TensorFlow,硬件有TPU,算法有AlphaGo、AlphaZero,其对人工智能技术的理解、对人工智能基础算法的投入,是当前任意一家中国企业所不能比拟的。总体而言,中国人工智能强在数据规模、产业应用,而弱在核心算法、基础算力。

在此需要特别指出的是,人工智能的发展仍处在非常初期的阶段,正如万里长征只迈出了一小步。当前存在的优势或者劣势,在人工智能新理论出现后,很可能会变得无关紧要。在这一超长期的科技赛道上,我们必须高度

转载请注明:http://www.0431gb208.com/sjsbszl/4026.html

  • 上一篇文章:
  • 下一篇文章: 没有了