导语:关键技术顶天,行业认知立地。当打破了实验室和现实的隔阂之后,技术不再局限于自身,而是和广大的外部场景做关联,最终成就了科大讯飞AI技术能够迅速从研发到规模化落地的能力。
自然语言处理(NLP)一直是人工智能渴望攻克的难题。
直到年,来自上世纪末的互联网时代累积的大量电子化的文本数据,以及深度学习的加持,终于让机器翻译乃至自然语言处理,走上了快车道。
深度学习秉承统计方法的概率传统,不同的是,它基本不需要做特征工程,而特征工程需要大量的专家知识。
但盛志超发现,即便是十几年后的现在,将基于深度学习技术的NLP应用进行落地时,他们也必须抛弃对技术的执念,回归行业的专家知识。
这是他在科大讯飞钻研NLP技术8年来,最珍贵的经验。
年从复旦大学毕业后,盛志超在一家创业公司做NLP的研究,经过两年多的实践积累,他希望寻找更大的平台用科技创造真正的社会价值。而彼时的科大讯飞,也凭借刚刚发布的讯飞输入法和语音云而在人工智能语音领域小有名气。因着语音合成技术中前端文本韵律预测和文本关联的契机,早已开始了NLP的涉足和探索,并且已经在语音交互和机器翻译上有所实践。
渴望用科技创造真正社会价值的人选择了一家希冀“用人工智能建设美好世界”的公司,一切都如此顺理成章。
1、黎明前夜,转型成了必由之路
NLP的历史几乎跟计算机和人工智能(AI)的历史一样长。而由于其天然具有实现人与计算机之间用自然语言进行有效沟通的桥梁属性,也就带来一个非常有趣的现象,那就是在开始探索感知智能的时候也总会连同认知智能一起被牵涉其中。
这种现象在科大讯飞也得到了演绎。
语音合成技术中,前端的文本韵律预测,就和文本关联很大。所以科大讯飞在成立初期开始语音探索时便涉足NLP领域,不过早期局限于文本预测、语音识别的语言模型和文本检索等内容。
年,科大讯飞成立AI研究院,正式将NLP与语音合成、评测和识别作为核心研究方向。
由此,科大讯飞NLP在落地方面的尝试便开始在跌跌撞撞中一路行进。
年语音测评技术已经基本成熟,普通话测试系统通过了国家语委鉴定;语音合成技术也在年首次超过普通人说话水平,并连续多年在国际英文语音合成大赛中夺冠。
然而包括知识图谱、语义检索、短信分类、文字客服在内的多个方向,由于技术不够成熟,迁移成本太高,基于文本方向的技术落地大多以失败告终。
“那个时候大家其实是立足于技术去思考匹配它未来可能使用的场景,慢慢地就发现这条路特别难走。”这段艰难探索经历所复盘出的经验教训,也在后来实践中确切印证,也许是时候颠倒一下这种思维模式了。
既然“拿着萝卜去找坑”不奏效,那倒不如反其道而行。
一个基于实际业务场景和需求去反向倒逼技术打磨的思维开始逆转当前的坎坷局面。
年,基于编码器-解码器结构的神经机器翻译模型诞生,机器翻译正式进入了深度学习的时代。
同年,科大讯飞AI研究院首席科学家魏思敏锐觉察到,未来公司内部要想在业界形成自己的技术优势,必须要形成数据+模型的双轮驱动模式,而深度学习正是这一模式成功的关键。
刚刚入职不久的盛志超,迎来了科大讯NLP技术发展的重要转折点,这一次,他亲历其中。年年初,盛志超所在的NLP认知群组建起“7人攻坚团队”,拉开了科大讯飞在NLP领域应用深度学习的大幕:他们首先检索了市场上所有与之相关的论文,并分成了几个不同的“Paperreading”小组,分头研究不同的方向,之后再互相讲解代码,同时动手尝试复现论文中的模型、算法等。
就这样“7人攻坚团队”成功将深度学习应用于NLP技术,并很快在公司范围内推广开来。
“当时我们的探索是走在很多高校和同行之前的”,回忆这段经历,盛志超说,团队彼此的信任、凝聚力和共同的决心是他们成功不可或缺的因素。时至今日,当初的7人小组成员也早已成为科大讯飞不同业务方向的核心骨干。
应用深度学习和基于场景倒逼技术打磨的思维转变,科大讯飞的NLP终于要从黎明前夜得见破晓来临。
2、从场景中来,到行业中去
许多优秀演员在塑造角色的时候,经常在前期去到角色真实的工作或生活场景中去“体验生活”,在表演时力求达到忘我境界。
这种塑造方式淳朴而又难能可贵,却和盛志超在落地NLP时的路径相通。
年9月,刚刚入职10天的盛志超被派到科大讯飞北京研究院,参与语文作文评阅的技术研发和落地工作。
作文评阅分为评分和批改两个方向,评分就是给文档判定一个分数,批改则需要根据文章中的语法使用是否正确、句式表达是否高级、内容是否符合主旨要求等维度进行综合评定。
前者技术相对简单,后者因为涉及认知问题则更为复杂。
如大家所知,小初高到大学,不同学习阶段对高级表达和词汇的定义标准差异巨大,所以在具体批改的时候也需要根据各学习阶段的具体情况来具体“定义”。
正像盛志超所说,“评阅技术不但是要评分也要给出合理的反馈,必须基于场景知识做模块化处理,逐层拆解之后,才能给出相对科学的评分和用户学习想要的反馈结果。”
“讯飞智学网刚刚上线的时候,作文评阅技术还是翻车出了异常。”盛志超说,这是他毕生难忘的经历。
当时学校要求一场考试覆盖个人,并且不能有一个人的评阅出现错误,但深度学习和传统的机器学习都是统计意义上的模型,考虑的都是整体的概率,不会兼顾到每个学生的情况。
于是,状况出现了。
英文作文的试卷开头都会给出一段引言,要求学生续写,而机器把引言当成了需要评阅的作答内容,其中一份作文即便是白卷也给了分数。试卷评分是一个非常严肃的事,这样的失误所影响的考试客观公平性,不管是老师层面还是盛志超自己都觉得是不可弥补的。
而反观其后,这次落地失败的根源还是在于我们
转载请注明:http://www.0431gb208.com/sjsbszl/2191.html