摘要
在本文中,我将使用NLP和Python解释如何为机器学习模型分析文本数据和提取特征。
自然语言处理(NLP)是人工智能的一个研究领域,它研究计算机与人类语言之间的相互作用,特别是如何对计算机进行编程以处理和分析大量自然语言数据。
NLP常用于文本数据的分类。文本分类是根据文本数据的内容对其进行分类的问题。文本分类最重要的部分是特征工程:从原始文本数据为机器学习模型创建特征的过程。
在本文中,我将解释不同的方法来分析文本并提取可用于构建分类模型的特征。我将介绍一些有用的Python代码。
这些代码可以很容易地应用于其他类似的情况(只需复制、粘贴、运行),并且我加上了注释,以便你可以理解示例(链接到下面的完整代码)。
转载请注明:http://www.0431gb208.com/sjsbszl/1690.html